
PROLOG From the Bottom Up

By Bill Thompson and Bev Thompson∗

The Japanese Fifth Generation Computer Systems project uses a PROLOG derivative as its funda-
mental programming language in an attempt to undercut the dominance of American and European
manufacturers.

S
ince AI is such a new �eld, very few have had the
opportunity of the apprentice to study under a
master craftsman. Except for those working in

large university and corporate AI labs, most of us who
are interested in AI are working in relative isolation, hun-
grily devouring all of the books, articles, and inexpensive
software we can get our hands on.

In this column we would like to become your col-
leagues in the exchange of ideas, techniques, and infor-
mation about resources. We hope that as we share our
ideas with you, you will do the same with us. If you have
a better solution to a problem than the one we present,
let us know. Also, if you have a problem that is of gen-
eral interest, or an unusual technique, by all means send
it along.

We are planning to use actual code in presenting new
programming techniques. In the column itself we will
print chunks of code, and at time we will make programs
available on the bulletin boards listed on page 5. Since
we're gearing this column to those who, like us, come from
the more traditional programming backgrounds, we've de-
cided to work primarily in Pascal. This seems like a good
choice not only because it's a good teaching language but
also because it's familiar to most C and Modula program-
mers. As with everything else, our direction will be heav-

ily in�uenced by your opinions, so be sure to be free with
them.

We've always had the idea that one of the most ef-
fective ways to learn a new programming language is to
write a program that implements part of the language. In
our �rst two columns, we will describe a very basic im-
plementation of PROLOG. Our focus in the �rst article
is not how to program in PROLOG but how PROLOG
operates and what features distinguish it from more con-
ventional programming languages. In the next column
we will discuss the programming structures that are used
to implement those features. This will not only provide
you with a valuable look inside the language but will also
demonstrate some interesting Pascal programming tech-
niques.

You adventuresome souls who want to get a jump on
the next column may want to download the completed
VT-PROLOG (very tiny) interpreter written in Turbo
Pascal, which is available on the bulletin boards.

A SIMPLE EXAMPLE

We will begin to try to understand how PROLOG oper-
ates by examining a simple example. Consider a collection
of sentences. The sentences consist of single lowercase let-
ters, called facts, or more complicated structures, called

∗Originally published in AI Expert, September 1986. Revised and typeset by Mark Morgan Lloyd, January 2010. Original authors'

copyright reserved.

1

rules. The rules consist of a single lowercase letter and a
special symbol (:-), followed by a fact or series of facts
separated by commas. Each sentence is terminated by a
period. This collection of sentences is called a data base.
The following is a sample data base:

1. a :- b,c,d.

2. a :- e,f.

3. c.

4. d.

5. e.

6. f.

7. g :- e,f.

The numbers aren't part of the data base, they are merely
for our convenience. Line 1 can be read �a is true if b is
true and c is true and d is true.� Line 3 says �c is true.�
The as, bs etc. can stand for objects in the real world,
but since PROLOG programs manipulate symbols and
not their meaning, we will not confuse the issue by at-
taching an explicit meaning to each symbol. In line 1, a
is called the head and b,c,d is called the tail of the rule.
Line 3 has a head but no tail. The commas in rules stand
for the word �and.�

This data base might not seem particularly useful, but
it is still possible to perform some interesting operations
upon it. For instance, we might like to ask some questions
about its contents. We can see that c is true within the
data base, but what about a and e? Are facts a and e

both true within this data base? A question about the
data base is called a query. We write this query as a,e. It
is easy to examine the data base and see if a,e is true, but
as the data base becomes larger and the queries become
more complicated. a systematic method of searching the
data base will be necessary. We can develop this method
by noticing a couple of facts. First, an empty query (sym-
bolised by NIL) is always true. Second, if the head of the
query and the head of the rule match, replacing the head
of the query by the tail of the rule doesn't change whether
the query is true or false.

The second statement may require a little explanation.
To prove the query a,e., we notice that line 1 of the data
base says that a is true if b, c, and d are true. In other
words, a,e. is true if b, c, and d are true and e is true.
That condition can be expressed by the query b,c,d,e. If
we can �nd a series of transformations such as this that
reduce the query to NIL, then the original query was true.

One problem still remains with this method. Some
transformations may lead to dead ends. For example,
a,e. => b,c,d,e. will fail because no statement in the data
base begins with b, so no further transformation is possi-
ble. In a case like this we back up to the query before the
transformation and try the next rule. We only say that
the query was false when all possible transformations of
the original query have been exhausted. The process of
backing up and trying a new rule is called backtracking.

We can express this a little more concisely with the
pseudocode procedure shown in Listing 1. This pseu-
docode looks a great deal like Pascal, but we don't want
to worry about things like data types for rules and queries
yet so we will ignore them for the present.

LISTING 1: A procedure to solve queries.

PROCEDURE solve(query) ;

VAR

i : integer ;

BEGIN

IF query = NIL

THEN write('yes')

ELSE

FOR i := 1 TO max_rule_number DO

IF head(rule[i]) = head(query)

THEN solve(append(tail(rule[i]), tail(query))) ;

END ; (* solve *)

In Listing 1, rule[i] is simply one line from the
data base. Head is a function that returns the �rst
item of either a sentence or a query. Tail returns ev-
erything in a sentence or query after the head. If
there is nothing following the head, tail returns NIL.
Append is a procedure that merges pieces of rules
and queries to produce a new query. For exam-
ple, head(rule[1]) = a, tail(rule[1]) = b,c,d, and ap-
pend(tail(rule[1]),tail(query)) = b,c,d,e. Appending NIL

to a query returns the original query: append(f,NIL) = f.
The solve procedure is recursive; it calls itself with the
transformed query. The recursion is terminated when ei-
ther a query has been reduced to NIL or the search of the
data base for a particular query is exhausted.

To get a feeling for this process, let's examine the so-
lution to the query a,e. in some detail. Listing 2 shows
the calls to solve and the transformation of the queries.
The indentation level represents the level of recursion.

2

LISTING 2: Calls to procedure solve to answer query ?- a,e.

call to procedure matching rule

solve(a,e) 1. a :- b,c,d

solve(b,c,d,e) no matching rule

solve(a,e) 2. a :- e,f

solve(e,f,e) 5. e

solve(f,e) 6. f

solve(e) 5. e

solve(NIL) write('yes'), recursion terminated

solve(e) no matching rule (back out of recursion, continue search)

solve(f,e) no match

solve(e,f,e) no match

solve(a,e) no match, finished

UNIFICATION

One reason for collecting facts in a data base is to repre-
sent relationships among the data items and to use those
relationships to answer questions about the data. To ac-
complish this, we will �rst introduce a more convenient
notation to represent rules and queries and then modify
the solve procedure to handle the new notation.

Let's consider a relatively simple data base, which con-
tains some information about a few people's personal pref-
erences:

1. likes(joan,pool).

2. likes(alice,candy).

3. female(joan).

4. female(alice).

5. male(paul).

6. likes(paul,X) :- likes(X,pool),female(X).

Again, the numbers aren't part of the data base. Readers
familar with PROLOG may recognise this notation. It is
a convenient way to represent relationships. Line 1 may
be read �Joan likes pool�1. �Likes� is called a functor and
names a relationship between the �rst component, �Joan�,
and the second �pool�. Line 3 says �Joan is a female�.

Terms line �Joan�, �female�, etc. are loaded with mil-
lions of associations in our minds, but here we will only be
manipulating symbols. Thus the knowledge that Joan is
a common female name in North America has no meaning
unless it is de�ned in the data base.

Line 6 is slightly di�erent from the others: it contains
a variable. In PROLOG's notation, constants begin with
lowercase letters and variables begin with uppercase let-
ters or an underscore. A variable is a symbol whose value
will be determined in the context of some query. Line 6
can be read �Paul likes X if X likes pool and X is female�.
Or, more simply, �Paul likes any female who likes pool�.

With this notation we form queries such as �Does Paul
like Joan?� or �Who does Paul like?� The former is ex-
pressed as ?- likes (paul,joan) while the latter is expressed
as ?- likes(paul,A). ?- indicates that what follows is to be
treated as a query. The �rst query will cause solve to re-
spond �yes� or �no�. In the second case, solve should not
only tell us that Paul likes someone but who that someone
is. The process of �nding a value for a variable is called
binding the variable, and the value of the variable is often
called its binding. The set of all the current variables and
their bindings is called the environment.

Of course, with the introduction of functors and vari-
ables, our previous version of solve is inadequate. The
problem lies in the process of matching the head of a
rule against the head of a query. Consider the query ?-
likes(paul,joan). The head of the query is likes(paul,joan).
We take the functor and its components paul and joan to
be a single entity. We can probably agree that it should
not match the head of rules 1 through 5. Rule 1 tells us
about what joan likes, so the functors match but the �rst
components don't. Similarly, rule 2 tells us what alice
likes so it doesn't match the query. Rules 3, 4, and 5
aren't about likes at all so they don't match the query.
Rule 6 is di�erent, however. The functors match and the
�rst components match, but what about joan and X? In
a case such as this, we say that the head of rule 6 and the
query match, with the variable X from the rule bound to
joan.

Now we can continue as before. We append
the tail of the query NIL with the tail of the rule
likes(X,pool),female(X). and try to solve this trans-
formed query along with the added information that X
is bound to joan. The new query could be interpreted as
likes(joan,pool),female(joan).

Suppose instead we had posed the query ?-
likes(paul,A). Rules 1 through 5 still don't provide us with
a match but the head of rule 6 will match, provided we
can bind X to A. When one variable is bound to another,

1PROLOG notation has a convention that constants such as somebody's name start with a lowercase letter. For the purpose of

explanation quoted examples relax this, hence �Joan likes pool� treats �Joan� as somebody's name as is conventional in written English.

3

we say that the variables share a binding. When one is
matched to a constant, the other automatically takes on
the same value.

We still have one complication to consider. What
would happen if we were to add a new rule to the data
base, for example, likes(joan,X) :- likes(X,candy)? Are
the X s in this rule the same as in rule 6? Or suppose
we has posed the query as ?- likes(paul,X). Is the X in
the query the same one that appears in the rules? Ques-
tions like this are really an informal way of asking what
the scope of a variable is. A variable's scope is the range
over which its bindings are valid. Readers who are fa-
miliar with block-structured languages like Pascal or C
understand the concept of scope. In a block-structured
language a variable's scope is the block in which it is de-
�ned. That makes it possible to de�ne a local variable,
like X, in a procedure and also to de�ne another local
variable with the same name in another procedure. Since

these variables have di�erent scopes, they are di�erent
variables.

In PROLOG, a variable's scope is the rule or query
that contains it. This means that in likes(paul,X) :-
likes(X,pool),female(X)., each instance of X represents
the same variable. That variable is entirely di�erent from
the X de�ned in ?- likes(paul,X). In order to avoid con-
fusion among variables with the same name but entirely
di�erent meanings, we will have solve make a copy of the
rule being examined. The copy will be exactly the same
as the original rule in the data base but all variables in
the rule will be tagged by appending the recursion level to
them. Since a rule either fails or causes a recursive call to
solve, this will mean that when seeking the resolution of
a query, each time a rule is encountered its variables will
have unique names. Listing 3 contains the new version of
solve.

LISTING 3: Solve procedure using uni�cation.

PROCEDURE solve(query,env,level) ;

VAR

i : integer ;

new_env : same as query and env ;

BEGIN

IF query = NIL

THEN print_env(env)

ELSE

FOR i := 1 TO max_rule_number DO

IF unify(copy(head(rule[i]),level+1),head(query),env,new_env)

THEN solve(append(copy(tail(rule[i]),level+1),tail(query)),new_env,level+1) ;

END ; (* solve *)

Solve is called with the current query as before. Two
additional parameters are included with each call: env,
the current environment, and level, an integer that con-
tains the current recursion level. Env is a list of variables
and their bindings. Print_env is a routine that prints
the current environment. If a query is resolved (if some
set of transformations reduce it to NIL), the current envi-
ronment can be printed to show what set of bindings led
to the resolution of the query. Copy is a function that is
passed an object to copy and returns an integer. It then
returns a copy of that object with the integer appended

to each of the variables in the object.
Unify is a Boolean function that matches the heads

of sentences against the head of the query. If it returns
a value of true (indicating that a match has been made)
new_env contains a copy of the old environment plus any
new bindings that unify may have made. (The routine is
named unify rather than something like match because
the process of matching and binding is normally called
uni�cation.) Unify isn't particularly di�cult to design.
We'll leave aside most of its details, but Table 1 indicates
how rules and queries should be uni�ed.

4

TABLE 1: Uni�cation of items in rules and queries.

ITEM WITHIN THE QUERY
I
T
E
M

I
N

T
H
E

R
U
L
E

Constant (C2) Variable (V2) Functor (F2)

Constant (C1) succeed if C1 = C2 succeed bind V2 to C1 fail

Variable (V1) succeed bind V1 to C2 succeed bind V1 to V2 succeed bind V1 to F2

Functor (F1) fail succeed bind V2 to F1 succeed if

expressions have

same functor and

arity and each pair

of components can be

unified

Unify will have to be recursive because of the require-
ment to unify each of the components of a complex ex-
pression. Arity, mentioned in the table, is the number of
components in the expression.

This description of the interpreter is somewhat con-
cise, so let's look at a few steps in the resolution of the
query ?- likes(paul,A). to get a better understanding of
this process. Table 2 shows the steps involved in resolv-

ing this query. One thing to note in this table is that
when unify encounters a variable it looks up that vari-
able's binding in the current environment. If it �nds a
binding, it attempts to unify the binding with the param-
eter being matched. Thus, in attempting to unify joan
with X#0, it will look up the binding of X#0 and then
try to unify joan and A. Since A isn't bound, these two
items are uni�ed by binding A to joan.

TABLE 2: Solving the query ?- likes(paul,A).

QUERY ENVIRONMENT LEVEL MATCHING RULE BIND

likes(paul,A) NIL 0 0 likes(paul,X) :- likes(X,pool),female(X) X#0 to A

likes(X#0,pool),female(X#0) (X#0 A) 1 1 likes(joan,pool) A to joan

female(X#0) (A joan) (X#0 A) 2 3 female(joan)

NIL

Although this description has been greatly simpli�ed
and does not consider such important concepts as how
arithmetic and negation are handled, we hope it gives
you an understanding of how simple relationships can be
placed in a data base and the retrieved. If you down-
load the program, experiment with setting up a simple
relationship data base such as the one we've discussed,
This will help you become more accustomed to looking
at heads and tails and understanding the process of in-
stantiation that makes PROLOG such a powerful symbol
manipulator.

In the next issue we'll jump right in and see how to
implement VT-PROLOG.

RESOURCES

When this article was originally published in 1986 the
�eld of arti�cial intelligence was going through a �golden
age� with extensive and well-funded research engendered,
in part, by the Japanese Fifth Generation Computer Sys-
tems project.

The literature of PROLOG was growing rapidly. The
basic form of the VT-PROLOG interpreter came from
an article �Describing PROLOG by its Interpretation and
Compilation� by Jaques Cohen, December 1985, Com-
munications of the ACM. In the same issue was the ar-
ticle �PROLOG in 10 Figures� by Alain Colmerauer, one
of the original developers of PROLOG. That article de-

scribed PROLOG by means of a series of �gures, both eye
catching and informative. �Learning about PROLOG�, a
useful introductory article on PROLOG by Ramachan-
dran, Bharath and Margaret Sklar, appeared in the July
1985 issue of COMPUTER LANGUAGE, pp. 49-54. The
August 1985 issue of BYTE was dedicated to declara-
tive languages, of which PROLOG was the most impor-
tant example. PD PROLOG was a public domain inter-
preter available on a variety of bulletin board systems and
was released by Automata Design Associates, 1370 Arran
Way, Dresher, Pa. 19025.

By 2010 there is still signi�cant interest in PROLOG,
particularly with the addition of constraint logic program-
ming capabilities to several implementations. Needless to
say, the rise of the Internet with searching and indexing
services has obviously made it far easier to �nd useful in-
formation and implementations, but it is hoped that the
system described in this paper is still of some interest.

VT-PROLOG as currently released exists in these ver-
sions:

1.1 Original source as released in 1986, written by
Bill Thompson for Turbo Pascal v3.

1.2 Modi�ed in 2010 by Mark Morgan Lloyd to
compile with both v3 and v5.5.

1.3 Modi�ed to compile with both Turbo Pascal
v5.5 and Free Pascal v2.4 (forthcoming).

5

Despite being more than 20 years old it still serves as
an interesting testbed for experimentation, and there are
still areas where an individual or small team could make
useful contributions.

For example, the majority of PROLOG implementa-
tions are inherently single-threaded, i.e. irrespective of
the number of CPUs (�cores�) in a computer only one is
actively engaged in solving a query. Since the major Pas-
cal implementations support multi-threaded applications

with ease, could this be used to provide a transparent
performance boost to PROLOG?

Bill and Bev Thompson are writers and consultants
specialising in implementing AI techniques on microcom-
puters. They are the authors of MicroExpert, an expert
system shell, and have worked extensively on knowledge-
based designs.

6

