
Implementing a PROLOG Interpreter:

Programming Structures

By Bill Thompson and Bev Thompson∗

Understanding what is inside a complex system can make its operation seem less like magic, and
suggest ways it can be exploited and improved.

I
n the last issue we looked at the method PROLOG
uses to search its data base in order to satisfy a
query. This month we'll take a brief look at some

of the programming components involved in actually im-
plementing a PROLOG interpreter.

The �rst step is to make some decisions about the
storage of sentences and queries. Some form of linked al-
location method is an obvious choice. This method gives
us a great deal of �exibility in designing the data struc-
tures, and if we use dynamic storage allocation we are
saved the trouble of having to estimate things like array
sizes and rule and query lengths. Since many implementa-
tions of PROLOG are designed this way, studying linked
allocation should give us some insight into the behaviour
of commercial PROLOG interpreters.

We need to be able to store four basic types of item:
functors, constants, variables and cons items. The �rst
three have already been introduced, the fourth is the glue
that holds the rules and queries together. The functors,
constants and variables are stored in records that contain
a string �eld to store the actual data and a tag �eld to in-
dicate which kind of data item the string represents. The
cons items require a bit more explanation.

A cons item is a bit like the round disks that come
with Tinkertoys. You insert sticks into the disks and at
the other end of each stick you can attach an object or
another disk. Connecting the disks and sticks together al-
lows you to build large, complex structures out of simple

pieces. Similarly, the cons items allow us to build compli-
cated data structures in memory by attaching constants,
variables, and functors to one another in the proper order.

A cons item consists of a tag, which identi�es the
record as a cons item, and two pointers, a head pointer
and a tail pointer. The head pointer points to the �rst
item in the list; this could be a data item, such as a con-
stant, or the start of another list. In the latter case, the
head pointer points to another cons item. The tail pointer
points to the rest of the list. The items are linked together
in a list by the tail pointers.

As we build lists, cons items will proliferate, but this
method gives us a great deal of �exibility. We can repre-
sent a large number of complicated structures using this
method without having to change our basic allocation
routines. Figure 1 shows a typical cons cell. The basic
data types are shown in Listing 1.

∗Originally published in AI Expert, October 1986. Revised and typeset by Mark Morgan Lloyd, January 2010. Original authors'

copyright reserved.

1

FIGURE 1: Cell containing constant
'a' and a cons cell.

HEAD POINTER

TAIL POINTER

a

constant

cons

CONSTANT CELL

CONS CELL

The next step is to de�ne some memory allocation rou-
tines for the various kinds of nodes. We create a routine
called alloc_str to allocate string storage for functors,
constants and variables. We pass this routine a string
and a node type and it creates a node of the proper type
to hold the string. The routine returns a pointer to the
new node. Listing 2 contains this routine. get_memory

does the actual work of retrieving free memory. This is a
low-level routine that varies a great deal among di�erent
implementations of programming languages, so we simply
ignore its details and assume our programming language
gives us the tools to construct the necessary allocation
routines.

We also need some routines to perform the actual con-
struction of lists. The basic list construction routine is
called cons, which is short for construct. It is passed two
pointers: the �rst points to an item that becomes the head
of a list, the scont points to the list to which the new item
will be attached. cons creates a new cons node and sets
the node's head pointer equal to the �rst pointer and its
tail pointer equal to the second, returning a pointer to the
new node. Lists are constructed by repeated application
of cons.

Routines to take lists apart are also necessary. head
returns the head pointer from a cons cell and tail returns
the tail pointer. cons, head and tail are illustrated in
Listing 3. Figure 2 shows some of the steps involved in
creating the list ('a' 'b' 'c').

One other basic routine is also useful. append_list,
shown in Listing 4, attaches one list to the tail of the
other and returns a pointer to the newly constructed list.
It does this by consing the head of the �rst list to a list
created by appending the second list to the tail of the
�rst. If you are uncomfortable with list processing or re-
cursion in general it is worthwhile spending some time
studying this routine. It illustrates the kind of subtle but
powerful programming techniques used in processing lists.
In many programming languages, recursive functions pay
a heavy performance price. We will ignore performance
constraints for the present, we can always tune the pro-
gram up later.

LISTING 1: Record description for a node.

node_type = (cons_node,func,variable,constant) ;

node_ptr = ^node ;

node = RECORD

CASE tag : node_type OF

cons_node : (tail_ptr : node_ptr ;

head_ptr : node_ptr) ;

func,

constant,

variable : (string_data : string80) ;

END ;

LISTING 2: Low-level allocation routines for strings.

FUNCTION alloc_str(typ : node_type ; s : string80) : node_ptr ;

VAR

pt : node_ptr ;

BEGIN

get_memory(pt) ;

pt^.tag := typ ;

pt^.string_data := s ;

alloc_str := pt ;

END ; (* alloc_str *)

2

LISTING 3: Basic list-processing routines.

FUNCTION cons(new_node,list : node_ptr) : node_ptr ;

VAR

p : node_ptr ;

BEGIN

get_memory(p) ;

p^.tag := cons_node ;

p^.head_ptr := new_node ;

p^.tail_ptr := list ;

cons := p;

END ; (* cons *)

FUNCTION head(list : node_ptr) : node_ptr ;

BEGIN

IF list = NIL

THEN head := NIL

ELSE head := list^.head_ptr ;

END ; (* head *)

FUNCTION tail(list : node_ptr) : node_ptr ;

BEGIN

IF list = NIL

THEN tail := NIL

ELSE IF list^.tag = cons_node

THEN tail := list^.tail_ptr

ELSE tail := NIL ;

END ; (* tail *)

COMPILING

Once we have decided on the basic storage methods, the
next step is to develop a method of transforming the ex-
ternal form of the rules into their internal form as linked
lists. To do this we have to be more precise about what
constitutes a legitimate rule or query. The Backus-Naur
form (BNF) shown in Listing 5 illustrates the formal syn-
tax of rules and queries for our interpreter. In a BNF
description of a grammar, �::-� means �is de�ned to be�,
and �|� means �or�. In Listing 5, items surrounded by
curly braces are descriptive rather than formal de�ni-
tions. Items surrounded by single quotation marks are
literal items and must appear exactly as shown on List-
ing 5. All other items are nonterminal components of the
grammar and must be de�ned in the grammar. Using the
grammar expressed in Listing 5, it is possible to write a
simple recursive-descent compiler to translate rules into
their internal form.

To write the compiler, start at the �rst line of the
grammar and write a routine that can accept a token from
a �le and decide if it is the starting token of a query, rule
or command. A token is a string of characters surrounded
by white space or terminated by the end of a line.

The routine then calls the appropriate procedure to
analyze the rest of the sentence. Each routine in the
parser accepts tokens until it reads a token it can't recog-
nize. At this point it returns control to the routine which
called it. As a side e�ect of recognizing the components
of a rule or query, the compler builds the linked struc-
ture that represents the �nal form of the rule or query.
The VT-PROLOG interpreter available from the AI EX-

PERT Bulletin Board Services listed on page 8 and the
Compuserve account contains a simple compiler that ac-
complishes this. We won't go into the details of parsing
and compiling here, we'll leave that for another column.

The compiler constructs a data base, which consists of
a linked list of cons nodes. Each node's head_ptr points
to a linked list that represents the rule. Each component
of the rule is also a list. The list might contain a single
item in the case of a constant or variable, or could be more
complicated in the case of a functor and its components.
Figure 3 illustrates how a sentence like:

likes(paul,X) :- likes(X,wine).

is included as the second sentence in the data base.
This looks complicated, but we can take it apart eas-
ily by using head and tail procedures. For example,
head(tail(data_base)) points to the second sentence in the
data base.

SOLVING QUERIES

Queries are compiled into a structure exactly like rules
since they are syntactically similar. Only minor changes
are necessary to the previous column's pseudocode solve.
Listing 6 illustrates the new version of solve. We pass
solve two pointers, one to the current query and one to
the current environment, and an integer representing the
current recursion level. The environment has a linked list
of cons items. Each cons node points to a list consisting
of a variable and its binding. Figure 4 illustrates a typical
environment list.

3

FIGURE 2: Constructing the list ('a','b','c').

STEP 2

STEP 1

alloc_str(constant,’c’)

head_ptr

tail_ptr

NIL

list := cons(alloc_str(constant,’a’),cons(alloc_str(constant,’b’),cons(alloc_str(constant,’c’),NIL)))

STEP 3

constant

c

cons

constant

c

alloc_str

cons

cons(alloc_str(constant,’c’),NIL)

cons cons cons

list

constant

a

constant

b

constant

c

NIL

4

LISTING 4: The append routine.

FUNCTION append_list(list1,list2 : node_ptr) : node_ptr ;

BEGIN

IF list1 = NIL

THEN append_list = list2

ELSE append_list = cons(head(list1),append_list(tail(list1),list2)) ;

END ; (* append_list *)

LISTING 5: Grammar of rules and queries.

Sentence ::= rule | query | command

rule ::= head '.' | head ':-' tail '.'

query ::= '?-' tail '.'

command ::= '@' file_name '.'

head ::= goal

tail ::= goal | goal ',' tail

goal ::= constant | variable | structure

constant ::= {quoted string} | {token beginning with 'a�z'}

variable ::= {token beginning with 'A�Z' or '_'}

structure ::= functor '(' component_list ')'

component_list ::= goal | goal ',' component_list

file_name ::= {legitimate DOS file name, surrounded by single quotes if it

contains '.', ':' or '\'}

To perform the copy routines described in the pseu-
docode version of solve, we call copy_list. This function
accepts a list and an integer representing the recursion
level and returns a pointer to a new list. The new list is
similar to the old, except that the variables in the new
list have the recursion level appended. The new list also
illustrates an interesting property of linked lists. They
can share data. In creating the new list, we create new
cons and variable nodes, but we only copy pointers to
functor and constant nodes in the original list. Thus the
new list contains pointers to nodes originally allocated
for the �rst list. Both lists share these nodes. Listing 7
illustrates copy_list. Rather than just printing the envi-
ronment, solve calls check_continue when the query list
is �nally reduced to NIL. This routine prints the appro-
priate elements from the environment list and then waits
for the user to respond by either pressing the Enter key
or typing a semicolon (;). The semicolon is interpreted as
a request to continue searching for more solutions. Press-
ing the Enter key is interpreted to mean that the user is
satis�ed with the present solution and the search should
be abandoned.

unify is implemented as a Boolean function which per-
forms the matching described by Table 1. When unify
binds a variable, it leaves a new list on the front of the
current environment list. By putting new bindings on the
front of the list, the proper environment is always avail-
able for backtracking. Listing 8 illustrates how new lists
are attached to the front of the environment list.

make_binding illustrates one other interesting point.
Variables that begin with an underscore are not bound to
anything. They are called anonymous variables and are
useful for forming queries where we are not interested in
the particular values used to resolve a query.

GARBAGE COLLECTION

You may have noticed that some of the list operations
result in nodes that are inaccessible. Repeated use of
copy_list in the procedure solve results in a series of
lists, portions of which we have no access to. This is
not a problem if we have in�nite memory available to us.
Unfortunately, since real computers have severely limited
memories, we need a method of reclaiming some of this
lost space.

The interpreter recovers space by means of a simple
but e�ective garbage collection method. It maintains a
list of cons nodes which initially point to the data base
and the original query. On entry to solve, the current
query and the current environment are consed to the front
of this list. This list, called saved_list, represents all the
items that must be maintained should garbage collection
be invoked. On exit from solve, the cons nodes pointing
to the current query and environment are removed from
the list.

Before each call to unify, a check is made of the amount
of free memory. If this amount falls below a speci�ed level,
the garbage collection routines are called. The garbage
collection method depends upon the fact that Turbo Pas-
cal allocates dynamic memory in eight-byte blocks. The
interpreter considers all of dynamic memory to be a col-
lection of eight-byte blocks. Gargage collection proceeds
in three phases. First, each block in memory is marked
as being available. Next, saved_list is traversed and each
cell on saved_list is marked as being in use. Finally, each
memory block is again examined and blocks not marked
as being in use are attached to a special free block list. Ad-
jacent free blocks are compacted into larger blocks. The
next time get_memory is called, the free list is �rst exam-
ined for a suitable block, and if one is found, that block
is reused.

5

FIGURE 3: The structure of � likes(paul,X) :- likes(X,wine)�.

DATA BASE

REST OF

POINTER TO FIRST RULE

cons

cons cons

cons

cons

cons cons cons cons cons

func

likes

constant

paul

variable

X

func

likes

constant

X

variable

wine

NIL

data_base

BUILT-IN PREDICATES

The entire interpreter described is available in source code
form from the AI EXPERT BBS and Compuserve ac-
count. It is written in Turbo Pascal for the IBM PC and
compatibles. It should not be di�cult to convert to an-
other version of Pascal or another language. If you wish
to convert the program to another language, the target
language should support recursion and some form of dy-
namic memory allocation. C or Modula-2 would be an
ideal target language.

This interpreter illustrates the pattern-matching capa-
bilities of PROLOG, but most implementations of PRO-
LOG are considerably more sophisticated than this. Most
commercial PROLOGs allow users to de�ne rules that dis-
play messages on the screen, read the keyboard, and con-
trol the search mechanism. Also, our simple interpreter
contains no arithmetic capabilities or ability to make nu-
merical or string comparisons. Commercial interpreters
provide these capabilities through built-in predicates. A
built-in predicate is a goal whose de�nition is provided by

the interpreter rather than the programmer.

Built-in predicates could be included in the solve rou-
tine. After attempting to match the head of a query
against the heads of each of the rules, it could be matched
against a list of built-in functions. If a match is found,
any variables in the component list could be looked up in
the current environment list and the operation performed.
Built-in operations could have side-e�ects such as opening
a �le or printing items on the screen. These operations
should indicate successful completion by calling solve with
the tail of the query.

OTHER EXTENSIONS

Most versions of PROLOG provide a means to manipu-
late lists directly from rules. A list is an ordered sequence
of elements. The ability to manipulate lists in PROLOG
allows us to write concise programs to perform tasks like
parsing and sorting. List manipulation in PROLOG will
be the subject of a later article.

6

FIGURE 4: Typical environment showing X bound to joan.

ENVIRON

cons

cons

variable

X

cons

constant

joan

NIL

cons

POINTER TO SECOND

BINDING

REST OF NIL

ENVIRONMENT

LIST

LISTING 6: The solve procedure- �nal version.

PROCEDURE solve(list,env : node_ptr ; level : integer) ;

VAR

new_env,p : node_ptr ;

BEGIN

IF list = NIL

THEN check_continue

ELSE

BEGIN

p := data_base ;

WHILE (p <> NIL) AND (NOT solved) DO

IF unify(copy_list(head(head(p)),level + 1_,

head(list),env,new_env)

THEN solve(append_list(copy_list(tail(head(p)),level + 1,

tail(list)),new_env,level + 1) ;

p := tail(p) ;

END ;

END ; (* solve *)

7

LISTING 7: Routine to copy lists.

FUNCTION copy_list(list1 : node_ptr ; copy_level : integer) : node_ptr ;

VAR

temp_list,p : node_ptr ;

level_str : string[6];

PROCEDURE list_copy(from_list : node_ptr ; VAR to_list : node_ptr) ;

BEGIN

IF from_list <> NIL

THEN

CASE from_list^.tag OF

variable : to_list := alloc_str(variable, concat(from_list^.string_data, level_str) ;

func,

constant : to_list := from_list ;

cons_node: BEGIN

list_copy(tail(from(list),to_list) ;

to_list := cons(copy_list(head(from_list),copy_level),to_list) ;

END ;

END ;

END ; (* list_copy *)

BEGIN

str(copy_level,level_str) ;

level_str := concat('#'.level_str) ;

temp_list := NIL ;

list_copy(list, temp_list) ;

copy_list := temp_list ;

END ; (* copy_list *)

TABLE 1: Uni�cation of items in rules and queries.

ITEM WITHIN THE QUERY

I
T
E
M

I
N

T
H
E

R
U
L
E

Constant (C2) Variable (V2) Functor (F2)

Constant (C1) succeed if C1 = C2 succeed bind V2 to C1 fail

Variable (V1) succeed bind V1 to C2 succeed bind V1 to V2 succeed bind V1 to F2

Functor (F1) fail succeed bind V2 to F1 succeed if

expressions have

same functor and

arity and each pair

of components can be

unified

LISTING 8: Procedure to bind variables.

PROCEDURE make_binding(l1,l2 : node_ptr) ;

BEGIN

IF copy(string_val(head(l1)),1,1) <> '_'

THEN new_environ := cons(cons(head(l1),l2),environ)

ELSE new_environ := environ ;

unify := true ;

END ; (* make_binding *)

We hope that these two articles have given you some
idea of the issues involved in implementing a PROLOG in-
terpreter. The full VT-PROLOG source is available from
the AI EXPERT BBS.

Bill and Bev Thompson are writers and consultants
specialising in implementing AI techniques on microcom-
puters. They are the authors of MicroExpert, an expert
system shell, and have worked extensively on knowledge-
based designs.

8

